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Relations Between Transport Coefficients in
Lennard-Jones Fluids and in Liquid Metals1

D. M. Heyes2,3 and N. H. March4

Several simple approximate hard-sphere relations for transport coefficients are
compared with the results of molecular dynamics (MD) simulations performed
on Lennard-Jones (LJ) fluids. Typically the individual transport coefficients:
self-diffusion coefficients, D, shear viscosity, ns, bulk viscosity, nB, and thermal
conductivity, L, agree within a factor of two of the exact results over the fluid
and liquid parts of the phase diagram, which seems reasonable in view of the
approximations involved in the models. We have also considered the ratio, L/ns,
and the product, Dns, for which simple analytic expressions exist in the hard-
sphere models. These two quantities also agree within a factor of two of the
simulation values and hard sphere analytic expressions. Using time correlation
functions, Tankeshwar has recently related the ratio L/D to thermodynamic
quantities, in particular, to the differences in specific heats, Cp — Cv, and to the
isothermal compressibility, KT . Using D and thermodynamic values taken solely
from LJ MD simulations, his relation was tested and found to give typically
better than ~20% agreement at liquid densities, deteriorating somewhat as
density decreases into the gas phase. Finally liquid metals are considered. In this
case, L is dominated by its electronic contribution, which is related approxi-
mately to the electrical conductivity by the Wiedemann-Franz Law. Some
theoretical results for the electrical conductivity of Na are referenced, which
allow a semiquantitative understanding of the measured thermal conductivity of
the liquid metal. Shear viscosity is also discussed and, following the work
of Tosi, is found to be dominated by ionic contributions; Nevertheless, at the
melting temperature of Na, a relation emerges between thermal conductivity,
electrical resistivity and shear viscosity.
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1. INTRODUCTION

Static atomic structure in liquids is accessible through neutron experiments
which allow, among other things, the stucture factor, S(k) and essentially
its Fourier transform, the pair correlation function or radial distribution
function g(r), to be extracted. Examples are given in the book by Egelstaff
[1]. However, theoretical calculations of the analytic nature of S(k) and
g(r) remain somewhat hampered by a lack of knowledge of the three-atom
correlation function g(3) even when a pair potential, P ( r ) , is assumed to
exist. Therefore, it is usually necessary to resort to computer simulation
[Molecular Dynamics (MD), or Metropolis Monte Carlo (MC)] to obtain
g(r) for a particular pair potential. Early attempts to express transport
coefficients in terms of essentially only g(r) and P ( r ) met with only partial
success, and emphasis has moved into the area of the dynamical structure
factor, S(k, w) which was introduced into the theory of liquids by van
Hove [2]. Its physical interpretation is outlined below. We note here first
that it is accessible again by (inelastic) neutron scattering [1] or, in a more
limited region of the (k, w) plane, by light scattering. Some recent applica-
tions to metallic lithium have been reported.

The link between these scattering functions and transport coefficients is
through the so-called Green-Kubo formulas [3]. These exploit the fact that
S(k, w), for example, can be related to hydrodynamic equations containing
the transport coefficients in the long-wavelength (i.e., k ->0) and low-fre-
quency (i.e., w —> 0) limits. This approach is applied to metallic liquids below.

Again, as in the static structure problem, computer simulation has
been applied many times to the dynamics of molecules in liquids. A con-
siderable body of data exists on computed transport coefficients, S(k, w),
and related time correlation functions. The focus of the present work is to
review the extent to which simple models can be used to account for
"experimental" data obtained from "real" experiments (e.g., neutron scat-
tering) or MD "computer" experiments.

2. SIMPLE LIQUIDS MODELED USING THE LENNARD-JONES
POTENTIAL

After the above rather general considerations, we consider a specific
and popular model fluid, the so-called Lennard-Jones (LJ) fluid in which
the model molecules interact through the Lennard-Jones potential,
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where c and E are the length and energy scaling parameters, respectively.



In this section we consider the predictions for the transport coefficients
from MD simulations and compare them with hard-sphere models for
specific transport coefficients. The LJ fluid is the ideal model fluid as its
transport coefficients [4, 6] and equation of state [7] are reasonably well
known over the whole phase diagram.

Semiempirical expressions can,be derived for the transport coefficients
in terms of thermodynamic quantities, which can be obtained indepen-
dently. For example, Longuet-Higgins and Pople (LHP), have derived
simple expressions for the transport coefficients based on the approximate
kinetics of an equivalent hard-sphere fluid, with hard-sphere diameter, CHS

[8,9],

where pHS = Nc3
HS/V and the compressibility factor is that of the equiv-

alent hard-sphere system at the same temperature. We call Eqs. (2)-(5) the
LHP transport coefficient formulas.

The problem with these expressions in Eqs. (2)-(5) is that they do not
reduce to the known kinetic theory expressions in the dilute gas limit. An
alternate proposal that does not have this deficiency is to use the following
new expressions:
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and for the bulk viscosity, nB,
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We call Eqs. (6)-(9) the H transport coefficient formulas.
In Table I we compare the self-diffusion coefficients and thermal con-

ductivities from the different approaches and in Table II the viscosities are
similarly compared. The four highest density states in these tables are close
to the fluid-solid coexistence line [10]. Best agreement with simulation
data is found with the self-diffusion coefficients from the Longuet-Higgins
and Pople (LHP) expressions. The LHP thermal conductivity is uniformly
about a factor of 2 too small. The LHP and H shear viscosities are about
50 % of the simulation values. Agreement, in general, between the simula-
tion and approximate formulas is therefore reasonable considering the
approximations employed in the derivations of these formulas. The use of
Eqs. (6)-(9) provides the advantage of reducing to the ideal gas limits in
the limit of zero density.

Table I. Comparison Between the Self-Diffusion Coefficients, D, and Thermal
Conductivities, L, of Lennard-Jones (LJ) Fluids Computed by Molecular Dynamics

[4, 6] with Various Semi-empirical Predictionsa

T

0.73
1.06
1.46
2.50
2.50
2.51
1.21
1.83
1.81
1.90
1.84

P

0.844
0.910
0.993
0.600
0.803
1.040
0.966
0.50
0.60
0.801
1.049

DMD

0.029
0.035
0.031
0.32
0.18
0.059
0.040
0.37
0.26
0.13
0.033

DLHP

0.040
0.045
0.048
0.29
0.16
0.077
0.042
0.31
0.22
0.12
0.05

DH

0.018
0.022
0.024
0.23
0.11
0.046
0.020
0.24
0.16
0.076
0.027

Ls, MD

6.9
9.2

11.2
4.17
7.2

13.8
8.9
2.6
3.4
7.4

13.5

Ls, LHP

4.29
5.34
6.85
0.95
2.37
6.26
6.6
0.61
1.03
2.60
7.74

LS, H

5.80
7.56

10.0
3.85
6.16

11.35
9.2
2.7
3.5
5.8

11.8

Ls, T

8.71
11.12
10.96
11.32
18.66
17.32
14.7
8.0

10.7
16.1
12.6

a Quantities here and in the next two tables are in LJ reduced units of E , c , and m, the mass
of the LJ molecule. The LHP subscripts refer to the Longuet-Higgins and Pople expressions
[8, 9]. The H subscripts refer to predictions from empirical formulas, Eqs. (6) and (7).
LS,T refers to predictions of Eq. ( 12). The equivalent hard-sphere diameter is given by cHS =
1.0217(1.0 -0.0178/T1.256)/T1.0/12.0 taken from Ref. 21. The hard-sphere compressibility fac-
tor was taken from the hard-sphere equation of state of Carnahan and Starling [22].
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Table II. Comparison Between the LJ Shear and the Bulk Viscosities Computed
by Molecular Dynamics [4, 6]a

T

0.73
1.06
1.46
2.50
2.50
2.51
1.21
1.83
1.81
1.90
1.84

P

0.844
0.910
0.993
0.600
0.803
1.040
0.966
0.50
0.60
0.801
1.049

ns, MD

3.4
4.1
6.3
0.95
2.0
5.3
4.4
0.61
0.88
2.0
8.0

nS,H

1.72
2.14
2.74
0.38
0.95
2.50
2.64
0.24
0.41
1.04
3.09

ns, LHP

1.55
2.02
2.67
1.03
1.64
3.03
2.45
0.73
0.92
1.55
3.15

nB, MD

1.47
1.70
1.85
0.77
1.40
2.30
1.82
0.52
0.78
1.38
2.19

nB, LHP

2.86
3.56
4.57
0.63
1.58
4.17
4.40
0.40
0.69
1.73
5.16

nB,H

1.55
2.02
2.67
1.03
1.64
3.03
2.45
0.73
0.92
1.55
3.15

a The LHP subscripts refer to the predictions for the Longuet-Higgins and Pople expressions
[8, 9]. The H subscripts are the predictions from empirical formulas, Eqs. (8) and (9).

3. LENNARD-JONES FLUIDS: TRANSPORT COEFFICIENT
RATIOS

Now we focus on relations between transport coefficients which
emerge from the hard-sphere theories (see Collins and Raffel [11] and
Longuet-Higgins and Pople [8]) and the "exact" MD results. The first of
these relationships concerns the ratio of the thermal conductivity, Lto the
shear viscosity, ns. Using the Longuet-Higgins and Pople formulas, one
obtains the following relationship between the thermal conductivity and
the shear viscosity,
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The ratios, L/ns, obtained from simulation are given in Table HI, and
(apart from the low-density state of p = 0.6) are quite close to the value of
2.5 in reduced units predicted by Eq. (10).

The second relationship we consider is the product of the self-diffusion
coefficient and the shear viscosity. Using the Longuet-Higgins and Pople
formulas, we obtain

Results for this product are compared with the MD LJ values in Table III.
Again, the ratio given by Eq. (11) is seen to be semi-quantitative apart
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Table III. Test of Eqs. (10) and (11) for the LJ Fluids Using the
Thermal Conductivities and Shear and Bulk Viscosities Computed

by Molecular Dynamics [4, 6]

T

0.73
1.06
1.46
2.50
2.50
2.51

.21

.83

.81

.90

.84

P

0.844
0.910
0.993
0.600
0.803
1.040
0.966
0.50
0.60
0.801
1.049

LMD/nS, MD

2.03

2.24
1.78
4.39
3.60
2.60
2.02
4.26
3.86
3.70
1.69

DMDnS, MD

0.099
0.14
0.195
0.30
0.36
0.31
0.18
0.23
0.23
0.26
0.26

c2
HSPHSKBT/10

0.068
0.096
0.13
0.11
0.15
0.19
0.11
0.076
0.091
0.12
0.16

from the low density states where the right-hand side of this equation is a
factor of between 2 and 3 lower than the left-hand side. Otherwise, a factor
of two usually covers the deviations between the two sides of Eq. (11).

For the ratio of the thermal conductivity to the self-diffusion coef-
ficient, Tankeshwar [12] has used time-dependent correlation functions to
derive the approximate relation,

where we can use for the structure factor in the limit of zero k-vector,
S(0) = pkBTKT, in terms of the isothermal compressibility, KT. An assess-
ment of the accuracy of these expressions can be made for the LJ fluid
using its equation of state and transport coefficients in Table I. The for-
mula for A in Eq. (12) gives values that are about a factor of 2 too large
(see Table I) when compared with the simulation values. This relation is
again of some practical use at liquid-like densities but is a factor of 2 to 3
too large at lower reduced densities ~0.5.

4. LIQUID METALS

The self part Ss of the van Hove dynamical structure factor referred to
above can be written explicitly in the long-time and long-wavelength limits
as Ref. 3,



which, because of the range of validity (large r and t) of the diffusion equa-
tion, applies for small k and w. It follows from Eq. (13) that one can write
for the transport coefficient D:

which is the first of the so-called Green-Kubo formulas.

4.1. van Hove Dynamical Structure Factor S(k, w)

Having introduced a formula for diffusion, let us turn to the dynamic
generalization [i.e., S(k, w)] of the static liquid structure factor S(k) which
has already been discussed. The first point is that S(k, w) has the physical
interpretation that it is the probability that a neutron incident on the liquid
transfers momentum hk and energy hw to the liquid. The second point is
that the integral of the dynamical structure factor S(k, w) over all energy
transfers hw leads back to S(k), i.e.,

where p is the ionic number density of the liquid and £ is the bulk or com-
pressional viscosity.

4.2. Relationships Between D and ns for Liquid Metals Above the
Freezing Point

The above Green-Kubo formulas were applied by Brown and March
[13] to liquid metals as follows. For liquid metals just above the melting

In addition to this so-called zero-moment theorem, it can also be shown for
a classical liquid consisting of ions of mass m that

which is the second-moment theorem. There is a corresponding Green
Kubo formula for S(k, w) to that of Eq. (14), namely,
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temperature, Tm, they exploited the fact that the self-correlation function
Ss(k, w) and the dynamical structure factor S(k, w) entering the Green-
Kubo formulas have a rather well-defined frequency range 0<w<wD, the
Debye frequency wD being analogous to that in a crystalline solid. Relating
wD to the melting temperature Tm using Lindemann's law of melting,
Brown and March obtained the approximate relations for the ionic trans-
port coefficients at Tm:

Table IV. Shear Viscosities (in mPa.s) of Liquid
Metals at Freezing: Theoretical Values Are

Derived from Eq. (19)

Metal

Li
Na
K
Rb
Cs
Cu
Ag
Au
In
Sn

Experiment

0.60
0.69
0.54
0.67
0.69
4.1
3.9
5.4
1.9
2.1

Theory

0.56
0.62
0.50
0.62
0.66
4.2
4.1
5.8
2.0
2.1
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and

The formula in Eq. (19) was obtained earlier from kinetic theory by
Andrade [14, 15] and which leads to reasonably quantitative results if the
constant is chosen empirically as illustrated in Table IV below. However,
the result from Eq. (18) is less impressive. One reason for this is that
whereas Eqs. (18) and (19) yield a relation between D and ns at melting of
the form,



where O is the ionic volume and nl is the longitudinal viscosity. When
results for ns/nl eventually become available, it will be interesting to test
Eq. (21) for liquid metals at Tm in more detail than is currently possible.

5. WIEDEMANN-FRANZ LAW RELATING THERMAL AND
ELECTRICAL CONDUCTIVITY IN LIQUID METALS

The dominant contribution to the thermal conductivity, A, of metals
arises from the electrons, i.e., Le. The Wiedeman-Franz law relates this
contribution from the electrons to the electical conductivity, a, through

The resistivity R is then found by using this result and working to second
order in v. As only pairs of sites Ri are then correlated, taking the liquid
average, one, obtains a result in terms of the structure factor S(k) and the
Fourier transform of the localized potential v(k) say in Eq. (23). The result,
when one puts back all of the numerical factors, is for weak scattering with
a sharp Fermi surface of diameter 2kf [15] with vf the corresponding
Fermi velocity,

5.1. Weak Scattering Theory of Electrical Resistivity

The idea behind weak scattering theory is to represent the total poten-
tial energy, V(r), scattering the conduction electrons by a sum of screened
potentials v(r) at the ionic sites, Ri, where one has taken a "snapshot" of
the ions at a particular time:

where L is the so-called Lorenz number. Therefore, below we outline the
weak scattering theory of electical resistivity, R = c-1.

subsequent work of Zwanzig [16, 17] discussed in March [18] yields more
generally
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where Dkf is the blurring of kf and l is the electronic mean free path.
Tosi et al. [19] have applied Eq. (24) to the liquid alkali metals and

find excellent agreement. March and Tosi [20] have recently shown that
use of the Wiedemann-Franz Law of Eq. (22) then allows the temperature
dependence of the measured thermal conductivity of liquid Na to be
obtained theoretically in, better than a semi-quantitative manner. These
workers have also related D, L, and ns at the melting temperature of liquid
metals.

6. SUMMARY AND FUTURE DIRECTIONS

Emphasis has been placed here on relations between transport coef-
ficients of (a) Lennard-Jones fluids and (b) liquid metals near freezing. For
case (a) the ratio of the thermal conductivity to shear viscosity is usefully
given by Eq. (10) when simulation results are employed for all but the
lowest density states revealed in Table III. The factor 5/2 following from
the hard sphere model applies quite well to the LJ simulation derived
transport coefficients (which we assume to be essentially exact). Similarly,
Eq. (11) relating diffusion and shear viscosity has been found to represent
the results of the LJ simulations quite well, again apart from the low-den-
sity states.

We have also tested the formula given in Eq. (12) of Tankeshwar
[ 12], in which using time correlation functions he has related the ratio L/D
to the thermodynamic quantities including the long wavelength limit of the
structure factor, S(k). His relation agrees satisfactorily with the transport
coefficients obtained by simulation of Lennard-Jones fluids.

Liquid metals have also been discussed, but in a much more limited
way in that most of the considerations on transport currently apply at the
freezing point only. However, the Wiedemann-Franz law given in Eq. (22)
and the electrical resistivity (Ziman-Krishnan-Bhatia) formula of Eq. (23)
are notable exceptions to this rule. The formula of Eq. (19) which was first

This is the basic formula for the electrical resistivity, R, of simple (s — p)
nearly free electron metals such as Na and K. In Eq. (24), pi is the ionic
number density and, since S(k) is measurable by diffraction experiments,
the only quantity needed to determine R is the Fourier transform of the
localized atomic-like screened potential energy v(k). Some discussion of the
way approximations may be set up for this quantity is given in Ref. 15. It
is also relevant to note that real liquid metals have blurred Fermi surfaces
in accord with the Heisenberg uncertainty principle,
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given by Andrade [14] and derived subsequently from Green-Kubo theory
by Brown and March [13] works extremely well as shown in Table IV.
Equation (21) relating the product of Dns to the ratio ns/nl has not yet
been subjected to careful tesing either from experiment (because of lack of
data on the longitudinal viscosity) or because of the absence of systematic
computer simulation results. It would clearly be of interest in the future to
have data which will allow Eq. (21) due to Zwanzig to be tested.
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